Changes in Detroit Lake HAB Populations?

Kurt Carpenter USGS Oregon Water Science Center

Key Questions:

- Given the shifts in cyanotoxins, has there also been changes in the phytoplankton biovolumes or species composition?
- If so, what are the main drivers?
- How do the different years compare?
 - Snowpacks and hydrology
 - Reservoir fill rate and timing
 - Sunshine, precipitation, and wind
- What about nutrients from the 2020 wildfires?
- What spurred the large blooms in 2017 and 2018?

Data Analyses & Approach

Multivariate Statistics (Primer)

- Multivariate Ordination & Bubble Plots
- Similarity Percentages (SIMPER)
- Biota-Environment (Bio-ENV) "BEST" Analyses
- Relate to Test for Global change over years
- Iterative process

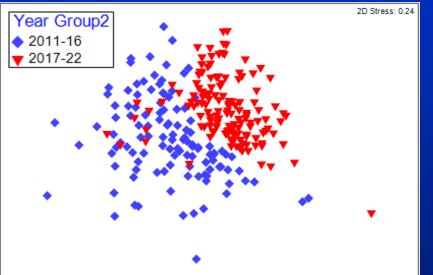
Datasets (2011-2022):

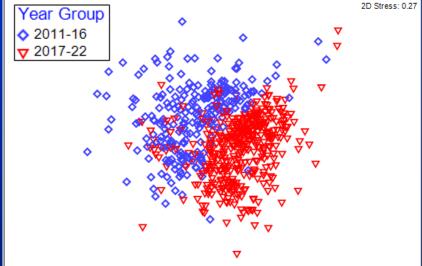
- USACE/USGS: continuous water quality and flow monitors dam operations, hydrology, water temperature
- City of Salem: Boat-based sampling (3 locations) phytoplankton, toxins, nutrients, sonde parameters (EXO)
- USDA/USFS: met station near Mongold State Park
- precipitation, solar, wind speed & direction

Phytoplankton Assemblages

Environmental Variables

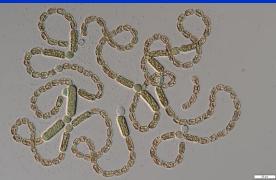
Metadata	3 sites: Log boom, Heater Creek and Blowout Creek Arms Phytoplankotn biovolume, averaged over each week Percent biovolume, averaged over each week April through October, 2011-2022 Samples: Log boom (n=254). All sites (n=632)	Hydrology	Lake elevation Outflow-Inflow (Q difference) Precipitation-24h Precipitation-accumulation
Algae ID	Samples: Log boom (n=254), All sites (n=632) Data harmonized and consolodated Combined Rhodomonas & Plagioselmis Dolichospermum - many species, inconsistent evaluation (speciated in early years, but not in latter years) Combined Species into Genera Final dataset: 48 Genera	Sun/temperature	Solar-accumulation Surface temperature Thermocline depth Degree days Air temp (min) Air temp (max) Air temp (avg) Evapotranspiration (ET) Relative humidity Dew point
		Wind Nutrients	Wind average 24 Wind peak Wind run (m/d) Wind direction Ammonium-nitrogen
		nutrients	Nitrite+nitrate-nitrogen Total nitrogen



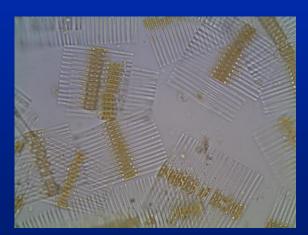

Ordination Results

- Separation of 2011-2016 vs. 2017-2022 samples
- Based on Genus biovolumes

Log boom



What changed in 2017?

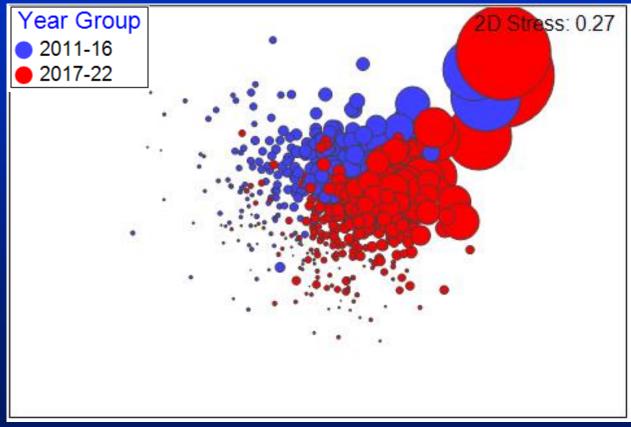


SIMPER Results

Six taxa showed notable increases in average percent biovolumes
Dolichospermum was nearly twice as abundant in recent years

Dolichospermum
Photo by Barry Rosen

Fragilaria crotonensis


	Group Aver		
Таха	2011-2016	2017-2022	Change
Dolichospermum spp.	32	29	no change
Asterionella formosa	12	8	no change
Plagioselmis & Rhodomonas	10	9	no change
Cryptomonas	6	5	no change
Fragilaria crotonensis	8	15	++
Aulacoseira	3	6	++
Cyclotella	1	5	++
Gloeotrichia	0	4	++
Aphanizomenon	4	1	

Bubble Plot Results

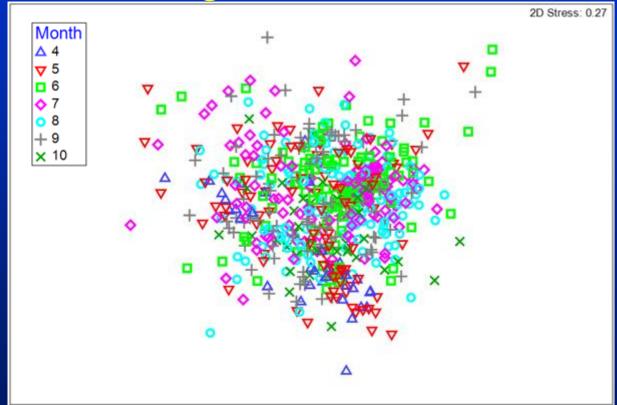
• *Dolichospermum* biovolume strongly governed the distribution of samples in the ordination

Log boom & Arms

Dolichospermum bloom Photo by Brandin Hilbrandt

Bio-ENV Results

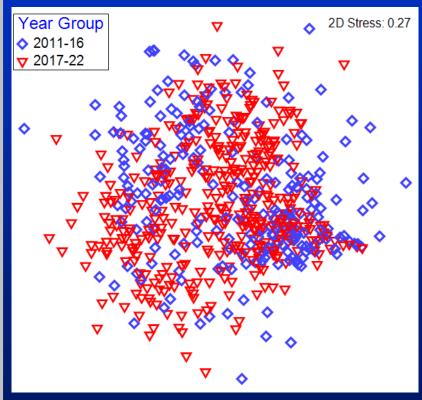
- Highest Rho values for temperature related variables
- Wind direction (East wind events?)
- Depth to spillway (dam operations?)


		LB	LB & Arms	
Top Single "BEST" Variable	Significance level	Rho	Rho	
**Surface water temperature	p < 0.01	0.203	0.157	
Minimum air temperature			0.134	
Average air temperature			0.112	
Thermocline depth	p < 0.01	0.124	0.103	
Q difference (outflow-inflow)			0.09	
Wind direction	p < 0.01	0.078	0.09	
Maximum air temp	p < 0.01	0.065	0.087	
Depth to spillway	p < 0.01	0.059	0.082	
Top 2-Variable model				
**Surface water temperature				
& Depth to spillway	p < 0.01		0.176	
Top Multi-Variable model				
**Surface water temperature				
& Min air temp, Wind				
direction, Depth to spillway	<i>p</i> < 0.01		0.191	
**Top models				

Other Ordination Results - BV

• Except for April, much overlap in sample months suggests different seasonal patterns among the various years

Log boom & Arms



Other Ordination Results - %BV

 Much overlap in samples among year groups suggests minimal changes in the phytoplankton assemblage <u>character</u>

Log boom & Arms

	Group Averages (%BV)		
Genera	2011-2016	2017-2022	Change
Dolichospermum	32	29	no change
Asterionella	12	8	no change
Plagioselmis & Rhodomonas	10	9	no change
Cryptomonas	6	5	no change
Fragilaria	8	15	++
Aulacoseira	3	6	++
Cyclotella	1	5	++
Gloeotrichia	0	4	++
Aphanizomenon	4	1	

Gloeotrichia Photo by Barry Rosen

Photo by Brandin Hilbrandt

Conclusions

- Ordinations point to a change after 2016, with notable increases in the biovolumes of Dolichospermum and other algae suggesting more favorable growing conditions
- While phytoplankton populations were larger in Detroit Lake in the recent years, the species composition hasn't changed substantially—*Dolichospermum* is still dominant, *Fragilaria crotonensis & Asterionella* are still subdominant
- High similarity among sample BVs from the log boom and the two Arms suggest mixing and exchange by wind and currents, although the sheltered Arms had higher BV of *Dolichospermum* and scums
- Bio-ENV analyses identified water temperature as having the greatest influence on phytoplankton assemblage composition and biovolume
- Wind speed and direction, and depth from surface to spillway, were also statistically significant variables being correlated with the phytoplankton assemblages
- Taken together, these results support a hypothesis that dam operations (use of the spillway) could have an important governing influence over the growth rates of algae and HABs in Detroit Lake through effects on residence times and temperature in the sunlit surface layer of the lake.

